3.706 \(\int \frac{1}{x (a+b x^2) \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=80 \[ \frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{a \sqrt{b c-a d}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a \sqrt{c}} \]

[Out]

-(ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]]/(a*Sqrt[c])) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])
/(a*Sqrt[b*c - a*d])

________________________________________________________________________________________

Rubi [A]  time = 0.0737381, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {446, 86, 63, 208} \[ \frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{a \sqrt{b c-a d}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

-(ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]]/(a*Sqrt[c])) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])
/(a*Sqrt[b*c - a*d])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 86

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), In
t[(e + f*x)^p/(a + b*x), x], x] - Dist[d/(b*c - a*d), Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d,
e, f, p}, x] &&  !IntegerQ[p]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \left (a+b x^2\right ) \sqrt{c+d x^2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{x (a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^2\right )}{2 a}-\frac{b \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{2 a}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{a d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{a d}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a \sqrt{c}}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{a \sqrt{b c-a d}}\\ \end{align*}

Mathematica [A]  time = 0.0747263, size = 78, normalized size = 0.98 \[ \frac{\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{\sqrt{b c-a d}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{\sqrt{c}}}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x^2)*Sqrt[c + d*x^2]),x]

[Out]

(-(ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]]/Sqrt[c]) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/Sq
rt[b*c - a*d])/a

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 331, normalized size = 4.1 \begin{align*} -{\frac{1}{a}\ln \left ({\frac{1}{x} \left ( 2\,c+2\,\sqrt{c}\sqrt{d{x}^{2}+c} \right ) } \right ){\frac{1}{\sqrt{c}}}}+{\frac{1}{2\,a}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d-2\,{\frac{d\sqrt{-ab}}{b} \left ( x+{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x+{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}}+{\frac{1}{2\,a}\ln \left ({ \left ( -2\,{\frac{ad-bc}{b}}+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }+2\,\sqrt{-{\frac{ad-bc}{b}}}\sqrt{ \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) ^{2}d+2\,{\frac{d\sqrt{-ab}}{b} \left ( x-{\frac{\sqrt{-ab}}{b}} \right ) }-{\frac{ad-bc}{b}}} \right ) \left ( x-{\frac{1}{b}\sqrt{-ab}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{-{\frac{ad-bc}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^2+a)/(d*x^2+c)^(1/2),x)

[Out]

-1/a/c^(1/2)*ln((2*c+2*c^(1/2)*(d*x^2+c)^(1/2))/x)+1/2/a/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1
/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(
1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))+1/2/a/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)
/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2
))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + a\right )} \sqrt{d x^{2} + c} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*sqrt(d*x^2 + c)*x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.8067, size = 1315, normalized size = 16.44 \begin{align*} \left [\frac{c \sqrt{\frac{b}{b c - a d}} \log \left (\frac{b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \,{\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} + 4 \,{\left (2 \, b^{2} c^{2} - 3 \, a b c d + a^{2} d^{2} +{\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )} \sqrt{d x^{2} + c} \sqrt{\frac{b}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 2 \, \sqrt{c} \log \left (-\frac{d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{c} + 2 \, c}{x^{2}}\right )}{4 \, a c}, \frac{c \sqrt{\frac{b}{b c - a d}} \log \left (\frac{b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \,{\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} + 4 \,{\left (2 \, b^{2} c^{2} - 3 \, a b c d + a^{2} d^{2} +{\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )} \sqrt{d x^{2} + c} \sqrt{\frac{b}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \, \sqrt{-c} \arctan \left (\frac{\sqrt{-c}}{\sqrt{d x^{2} + c}}\right )}{4 \, a c}, -\frac{c \sqrt{-\frac{b}{b c - a d}} \arctan \left (\frac{{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{b}{b c - a d}}}{2 \,{\left (b d x^{2} + b c\right )}}\right ) - \sqrt{c} \log \left (-\frac{d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{c} + 2 \, c}{x^{2}}\right )}{2 \, a c}, -\frac{c \sqrt{-\frac{b}{b c - a d}} \arctan \left (\frac{{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt{d x^{2} + c} \sqrt{-\frac{b}{b c - a d}}}{2 \,{\left (b d x^{2} + b c\right )}}\right ) - 2 \, \sqrt{-c} \arctan \left (\frac{\sqrt{-c}}{\sqrt{d x^{2} + c}}\right )}{2 \, a c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(c*sqrt(b/(b*c - a*d))*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2
 + 4*(2*b^2*c^2 - 3*a*b*c*d + a^2*d^2 + (b^2*c*d - a*b*d^2)*x^2)*sqrt(d*x^2 + c)*sqrt(b/(b*c - a*d)))/(b^2*x^4
 + 2*a*b*x^2 + a^2)) + 2*sqrt(c)*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2))/(a*c), 1/4*(c*sqrt(b/(b*
c - a*d))*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2 + 4*(2*b^2*c^2 -
3*a*b*c*d + a^2*d^2 + (b^2*c*d - a*b*d^2)*x^2)*sqrt(d*x^2 + c)*sqrt(b/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2
)) + 4*sqrt(-c)*arctan(sqrt(-c)/sqrt(d*x^2 + c)))/(a*c), -1/2*(c*sqrt(-b/(b*c - a*d))*arctan(1/2*(b*d*x^2 + 2*
b*c - a*d)*sqrt(d*x^2 + c)*sqrt(-b/(b*c - a*d))/(b*d*x^2 + b*c)) - sqrt(c)*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqr
t(c) + 2*c)/x^2))/(a*c), -1/2*(c*sqrt(-b/(b*c - a*d))*arctan(1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(d*x^2 + c)*sqrt(
-b/(b*c - a*d))/(b*d*x^2 + b*c)) - 2*sqrt(-c)*arctan(sqrt(-c)/sqrt(d*x^2 + c)))/(a*c)]

________________________________________________________________________________________

Sympy [A]  time = 6.80179, size = 63, normalized size = 0.79 \begin{align*} - \frac{\operatorname{atan}{\left (\frac{\sqrt{c + d x^{2}}}{\sqrt{\frac{a d - b c}{b}}} \right )}}{a \sqrt{\frac{a d - b c}{b}}} + \frac{\operatorname{atan}{\left (\frac{\sqrt{c + d x^{2}}}{\sqrt{- c}} \right )}}{a \sqrt{- c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**2+a)/(d*x**2+c)**(1/2),x)

[Out]

-atan(sqrt(c + d*x**2)/sqrt((a*d - b*c)/b))/(a*sqrt((a*d - b*c)/b)) + atan(sqrt(c + d*x**2)/sqrt(-c))/(a*sqrt(
-c))

________________________________________________________________________________________

Giac [A]  time = 1.11664, size = 107, normalized size = 1.34 \begin{align*} -d{\left (\frac{b \arctan \left (\frac{\sqrt{d x^{2} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d} a d} - \frac{\arctan \left (\frac{\sqrt{d x^{2} + c}}{\sqrt{-c}}\right )}{a \sqrt{-c} d}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^2+a)/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-d*(b*arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*a*d) - arctan(sqrt(d*x^2 + c)/sqrt(
-c))/(a*sqrt(-c)*d))